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Abstract 
This document contains supplementary information and 
figures further describing our acid-base equilibria and 
titration models, point of zero charge approximation, 
simplified governing equations in the ideal solution 
(infinite dilution) limit, and details of derivation of a 
generalized charge efficiency parameter. 
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S-1. Ideal solution limit 
We here discuss adsorption and surface charge dynamics 
in the ideal solution limit (infinite dilution where =

= 0) with and without external voltage. 
Electroneutrality condition in the ideal solution limit 
requires pH of electrolyte after equilibration with carbon 
to be 7 ( = ). So, the micropore concentration of 
hydronium is 

, =  exp(−Δ / ), (S.1)
and ionic charge density in the micropores can be written 
as 

= ( , − / , ) =
−2  sinh(Δ / ). 

(S.2)

For the case where external voltage  is applied, charge 
compensation requires + +  = 0. So, we 
substitute Eqs. (S.1) and (S.2) into charge compensation 
equation and arrive at a single equation below for Donnan 
potential
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(S.3)
 

 
Note, the left-hand side of Eq. (S.3) strictly decreases with 
increasing Δ . So, this equation has at most one real 
solution for any  . In the absence of applied voltage 
(floating electrode) electronic charge  vanishes and 
thus micropore ionic charge and surface chemical charge 
compensate each other (i.e., + = 0). Eq. (S.3) 
can then be simplified to 

−
,

1 + , /
+

,

1 + / ,
 

+ , − / , = 0. 

(S.4)
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Eq. (S.4) can be recast as a polynomial of degree +

+ 2. Similarly, note each term in Eq. (S.4) is strictly 
increasing in ,  and thus this equation has at most one 
real solution. 
 

S-2. Titration model  
In Section 4.1 of the main text, we showed results of 
titration model for carbon with acidic and/or basic surface 
charges. We here discuss titration model in more detail. 
We assume electrolyte solution has initial volume of  
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(before addition of any titrant) and initial salt 
concentration of . We then add either strong acid or 
base titrant of concentration  and volume  to 
the electrolyte solution. We define the pH value and 
hydronium concentration at this point (after addition of 
titrant but prior to the addition of carbon to the 
electrolyte) pH  and , , respectively. Assuming the 
added titrant completely dissociates, electroneutrality 
requires that 

, − , + , − / , = 0 , (S.5)
where ,  and ,  are cation and anion concentrations 
right after addition of titrant and before carbon-
electrolyte equilibration. Note,  is initial salt 
concentration with no titrant added. In case of titration 
with strong acid, ,  and ,  can be written as 

, =
+

 , (S.6a)

, =
+

+
 , (S.6b)

and in case of titration with strong base, as 

, =
+

+
 , (S.7a) 

, =
+

 . (S.7b) 

Substituting Eqs. (S.6) and (S.7) back into Eq. (S.5), we 
arrive at 

= , − / ,

− ( , − / , )
 , (S.8a) 

= , − / ,

− − ( , − / , )
 , (S.8b) 

for acid and base titration, respectively. Now, for known 
pH  values, we calculate , , , , and  using 
Eqs. (S6) to (S8). We then use these parameters as inputs 
to our multi-equilibria surface charge model (see Section 2 
of the main text). The electrolyte volume before addition 
of carbon is + . The final electrolyte and 
micropore pH (pH  and pH , ) are then determined using 
the governing equations discussed in Section 2 of the main 
text.  

S-3. Salt adsorption and micro-to-macropore 
equilibrium for asymmetric carbon 

In model results section of the main text (Section 4.1), we 
discussed micropore and macropore electrostatic 
environments as well as salt adsorption and surface 
charge efficiency for symmetric case where , = ,  and 
pH = (p + p )/2 = 7. We here show an 
asymmetric case where we set , = , = 1 M (as 
before), p = 4, and p = 8. Note, (p + p )/2 ≠
7 here. For other parameters, refer to Table 1 of the main 
text. Fig. S.1 shows pH ,  (final pH of micropore) versus 
pH  (final pH of solution) for initial salt concentrations in 
the range of 0 to 500 mM (solid lines). Dashed line shows 
pH , = pH . Note that all curves coincide at pHPZC = 6 
as expected, however, the plot is not symmetric around 
pH . Moreover, similar to symmetric case, pH ,  
approaches pH  only at high ionic strengths.  
Figs. S.1b and S.1c show concertation of charged acidic 
and basic groups (  and ) as a function of pH  and 
pH , . Results again show that  and  curves all 
collapse when plotted versus pH ,  (i.e. they are not 
functions of ionic strength). Additionally, note that  

 
Fig. S.1. Effect of ionic strength on micropore-to-macropore equilibrium for asymmetric carbon. (a) pH ,  versus pH  for 
titration of an asymmetric carbon with , = , = 1 M, p = 4, and p  = 8 at initial concentrations = 0, 1, 20, 
100, and 500 mM.  pH ,  is lower (higher) than pH  above (below) pH = 6. (b), (c) Concentration of charged acidic 
and basic groups (  and ) versus pH  and versus pH , . Similar to symmetric carbon, each  and  collapses 
on a single curve when plotted against pH , . 
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and  are not symmetric around pH = 6 when 
plotted versus pH , but are symmetric around pH  
when plotted versus pH , . 
Fig. S.2a shows net salt adsorbed  as a function of pH ,  
at different initial salt concentrations  in the range of 0 
to 500 mM. Other parameters are identical to those of 
Fig. S.1. According to Fig. S.1c, micropore surface charge is 
more negative (positive) at pH values lower (higher) than 
p  (p ). This explains the observation in Fig. S.2a that 
salt adsorption is considerable at pH , < p  and 
pH , > p  and is much lower otherwise. Moreover,  
decreases with ionic strength (or with ).  
These trends are similar to the symmetric case discussed 
in the main text. However, there are the following 
differences:(1) the minimum adsorption occurs at 
pH ,  = pH = 6 rather than at pH , = 7, and (2) salt 
adsorption saturates at pH ,  several units larger than 
p  (i.e. pH , > p + 2). The latter is because 

micropore surface charge saturates at pH ,  several units 
higher (lower) than p  (p ). Figs. S.2b and S.2c show 
individual cationic and anionic salt adsorption (  and ) 
for = 20 and 500 mM cases, respectively. We again see 
that (1) counter-ion adsorption (i.e. adsorption of cations 
at high pH ,  and anions at low pH , ) dominates co-ion 
expulsion at low ionic strength, and (2) counter-ion 
adsorption and co-ion expulsion are of the same order at 
high ionic strengths. Chemical charge efficiency  
(see Fig. S.2d) shows the trend similar to symmetric case 
with the following differences: (1) PZC is moved to 
pH = 6, and (2)  is not symmetric around PZC. 

S-4. Determination of point of zero charge  
As discussed in Section 4.1 of the main text, PZC 
corresponds to = 0 and ∆ = 0. This condition 
can be written as

 
 

+ = −
,

1 + /
+

,

1 + /
= 0. 

 

 
(S.9) 
 

where  and  are surface charges associated with 
i-th acidic and j-th basic functional group. The first term is 
sum of the (negative) surface charges associated with 
acidic groups, and the second term is sum of (positive) 
charges due to basic groups. Note, Eq. (S.9) is strictly 
increasing (since each term is strictly increasing) and so 

has at most one real root. Eq. (S.9) can also be recast as a 
polynomial of degree +  in . Exact value of PZC in 
general case then requires finding this root. PZC for 

= = 1, on the other hand, requires finding the real 
positive root of the quadratic below and is 
straightforward.  

 
Fig. S.2. Effect of ionic strength and micropore pH environment on salt adsorption dynamics for carbon with asymmetric 
surface chemistry parameters of , = , = 1 M, p = 4, and pKY = 8. (a) Net adsorbed salt = +  as a 
function of pH ,  for = 0, 20, 100, and 500 mM. Salt adsorption is considerable at pH , < p  and pH , > p
and is much lower otherwise. Moreover,  decreases with ionic strength (or with ). (b), (c) Cationic and anionic salt 
adsorption (  and ) for = 20 and 500 mM cases. (d) Chemical charge efficiency  versus pH , . General trend 
of  is similar to the case discussed in the main text, however,  is not symmetric about PZC (pH = 6) here.
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( , / ) + ( , − , ) − , = 0. (S.10) 
 

For a better representation of the results, we split the 
solution of this quadratic to two cases, namely, , > ,  
and , < , . We define = , / , − 1 for when 

, > , , and = , / ,  – 1 for when , < , . So, 
 and  are both positive quantities. These two 

parameters are a measure of asymmetry in concentration 
of acidic and basic groups. For example, = 0 and =
0 correspond to , = , , and > 0 and > 0 
correspond , > ,  and , < , , respectively. The 
solution can be written as 
 

=
              , > ,

/( )        , < ,
 (S.11) 

where  is 
 

=
1
2

1 + 1 + 4( + 1)/ ∙ / . (S.12) 
 

and  is either  or  (they both result in the same ). 
Taking logarithm of Eq. (S.11), pH  can be written as 
 

pH =
p − log − log         , > ,

p + log + log         , < ,
 (S.13) 

 

Fig. S.3 shows pH  versus  and  with p = 4 and 
p = 10. The results show that pH  decreases with  
and increases with . Taking the limit of Eq. (S.13) as 

→ 0 (i.e., , = , ),  approaches /   and 
we arrive at familiar equation pH = (p +  p )/2.  
On the other hand, according to Eq. (S.12),  approaches 
unity for large enough  (  or ) and we have  
 

pH =
p − log          , > ,

p + log          , < ,
 (S.14) 

 

For Eq. (S.14) to be valid, we need ( + 1)/ ∙ / ≪
1, or equivalently,  
 

≫ =
1
2

1 + 1 + 4 / . (S.15) 
 

So, for ≫ ,  approaches unity and pH  is 
independent of p . For ≫ ,  approaches unity and 
pH  becomes independent of p . The dashed lines in 
Fig. S.3 show extrapolation of pH  for ≫  and 

≫  (as described by Eq. (S.14)). These derivations 
can help in quick estimates of pH  given some 
knowledge of surface pK values and analytical 
concentrations.  

S-5. Proposed generalization for charge efficiency of 
CDI systems 

We introduced a generalized charge efficiency for CDI 
systems with functionalized surface charges in Section 4.4 
of the main text.  We here present details of derivation. As 
mentioned in the main text, we assume electrolyte 
volume is large enough and thus (1) initial and final 
electrolyte salt ion concentrations are equal to each other 
and constant ( = ,  and = , ), (2) initial and final 
pH of electrolyte are equal, and (3) pH is moderate such 
that salt concentration is considerably larger than 
hydronium or hydroxide. The latter can be justified by the 
fact that salt concentration in CDI is typically in 10-100 mM 
range, while even at pH = 4, = 0.1 mM. So,  is at 
least two orders of magnitude less than salt 
concentration. Thus, we can write 
 

 

≈ −2 sinh
∆

+ exp −
∆

− exp
∆

, 
 

(S.16) 

 
Fig. S.3. pH  as a function of  and  for p = 4 and 
p = 10 (solid lines). pH  decreases with  and 
increases with . At small values of  and  (i.e., ,  =

, ), pH  approaches (p +  p )/2. At high values 
of , on the other hand, pH  varies almost linearly with 
log  as pH = p − log  and so pH  is 
independent of p . At high values of , pH  is 
independent of p  and varies linearly with log  as 
pH = log − p . Dashed lines are extrapolation of 
pH  for cases where  ≫  and ≫ . 
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= − , 1 + exp −
∆

+ , 1 + exp
∆

, (S.17) 

 

= ( − ∆ ). 
 

(S.18) 
 
 
 
Substituting Eqs. (S.16)-(S.18) into charge compensation 
equation + + = 0, results in a 
transcendental equation for ∆ . We then calculate salt 
adsorption as 
 

= , − , + , − ,  

≈ 2 cosh
∆

− 1 . 
(S.19) 

 

Moreover, we express salt adsorbed at potential of zero 
charge  (i.e.  at which =0) as 
 

≈ 2 cosh − 1 . (S.20) 
 

The charge efficiency can then be defined as  

=
−

/
. (S.21) 

In this definition, −  is the extra salt adsorbed 
associated with applied potential  (note,  can be non-
zero at potential of zero charge ). Note that charge 
efficiency here is a function of external voltage, surface 
properties (i.e. , , , , p , and p  for = = 1), 

salt concentration , and initial pH. In Fig. S.4, we show 
adsorbed salt and electronic charge as well as charge 
efficiency as a function of  for various values of those 
parameters. Unless otherwise noted, other parameters 
used are listed in Table S.1.  
 
 
Table S.1 
Parameters used in Fig. S.4 
Parameter  Description   Value  Unit 

,   Analytical concentration of 
acidic group 1 M 

,   Analytical concentration of 
basic group 

1 M 

p   Acid dissociation constant 4 - 
p   Base dissociation constant 10 - 

  Volumetric micropore 
capacitance 145 F cm-3 

,  Cation and anion valance 1 - 
  Initial salt concentration 20 mM 
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Fig. S.4. Volumetric adsorbed salt and electronic charge (in units of M) vs external voltage  at various (a) analytical 
concentration of acidic and basic surface charges, (c) dissociation constant of acidic functional groups, (e) salt 
concentrations, and (g) electrolyte pH values. (b), (d), (f), (h) Charge efficiency vs  for parameters as in (a), (c), (e), 
and (g). Other parameters used are listed in Table S.1. 


